Roland SIEGWART
Illah R. NOURBAKHSH
Davide SCARAMUZZA

SECOND EDITION

Mobile Robots

Introduction to Autonomous Mobile Robots

Intelligent Robotics and Autonomous Agents Edited by Ronald C. Arkin

A list of the books published in the Intelligent Robotics and Autonomous Agents series can be found at the back of the book.

Introduction to Autonomous Mobile Robots

second edition

Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza

The MIT Press Cambridge, Massachusetts London, England $\ \ \, \mathbb{C}\ 2011\$ Massachusetts Institute of Technology Original edition $\ \ \, \mathbb{C}\ 2004$

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

For information about special quantity discount, please email special sales@mitpress.mit.edu

This book was set in Times Roman by the authors using Adobe FrameMaker 9.0. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Siegwart, Roland.

Introduction to autonomous mobile robots. - 2nd ed. / Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza

p. cm. - (Intelligent robotics and autonomous agents series)

Includes bibliographical references and index.

ISBN 978-0-262-01535-6 (hardcover: alk. paper) 1. Mobile robots. 2. Autonomous robots. I. Nourbakhsh, Illah Reza, 1970- II. Scaramuzza, Davide. III. Title.

TJ211.415.S54 2011 629.8'932-dc22

2010028053

10 9 8 7 6 5 4 3 2 1

To Luzia and my children, Janina, Malin, and Yanik, who give me their support and freedom to grow every day — RS

To my parents, Susi and Yvo, who opened my eyes - RS

To Marti, Mitra, and Nikou, who are my love and my inspiration - IRN

To my parents, Fatemeh and Mahmoud, who let me disassemble and investigate everything in our home — IRN

To my parents, Paola and Ermanno, who encouraged and supported my choices every day and introduced me to robotics at the age of three — DS

To my sisters, Lisa and Silvia, for their love — DS

Slides and exercises that go with this book are available at:

http://www.mobilerobots.org

Contents

Acknowledgments

Pre	face		xv
1	Intr	1	
	1.1	Introduction	1
	1.2	An Overview of the Book	11
2	Loc	13	
	2.1	Introduction	13
		2.1.1 Key issues for locomotion	16
	2.2	Legged Mobile Robots	17
		2.2.1 Leg configurations and stability	18
		2.2.2 Consideration of dynamics	21
		2.2.3 Examples of legged robot locomotion	25
	2.3	Wheeled Mobile Robots	35
		2.3.1 Wheeled locomotion: The design space	35
		2.3.2 Wheeled locomotion: Case studies	43
	2.4	Aerial Mobile Robots	50
		2.4.1 Introduction	50
		2.4.2 Aircraft configurations	52
		2.4.3 State of the art in autonomous VTOL	52
	2.5	Problems	56
3	Mol	57	
	3.1	Introduction	57
	3.2	Kinematic Models and Constraints	58

xiii

viii Contents

		3.2.1 Representing robot position	58
		3.2.2 Forward kinematic models	61
		3.2.3 Wheel kinematic constraints	63
		3.2.4 Robot kinematic constraints	71
		3.2.5 Examples: Robot kinematic models and constraints	73
	3.3	Mobile Robot Maneuverability	77
		3.3.1 Degree of mobility	77
		3.3.2 Degree of steerability	81
		3.3.3 Robot maneuverability	82
	3.4	Mobile Robot Workspace	84
		3.4.1 Degrees of freedom	84
		3.4.2 Holonomic robots	85
		3.4.3 Path and trajectory considerations	87
	3.5	Beyond Basic Kinematics	90
	3.6	Motion Control (Kinematic Control)	91
		3.6.1 Open loop control (trajectory-following)	91
		3.6.2 Feedback control	92
	3.7	Problems	99
4	Per	ception	101
	4.1	Sensors for Mobile Robots	101
		4.1.1 Sensor classification	101
		4.1.2 Characterizing sensor performance	103
		4.1.3 Representing uncertainty	109
		4.1.4 Wheel/motor sensors	115
		4.1.5 Heading sensors	116
		4.1.6 Accelerometers	119
		4.1.7 Inertial measurement unit (IMU)	121
		4.1.8 Ground beacons	122
		4.1.9 Active ranging	125
		4.1.10 Motion/speed sensors	140
		4.1.11 Vision sensors	142
	4.2	Fundamentals of Computer Vision	142
		4.2.1 Introduction	142
		4.2.2 The digital camera	142
		4.2.3 Image formation	148
		4.2.4 Omnidirectional cameras	159
		4.2.5 Structure from stereo	169
		4.2.6 Structure from motion	180

Contents ix

		4.2.7 Motion and optical flow	189
		4.2.8 Color tracking	192
	4.3	Fundamentals of Image Processing	195
		4.3.1 Image filtering	196
		4.3.2 Edge detection	199
		4.3.3 Computing image similarity	207
	4.4	Feature Extraction	208
	4.5	Image Feature Extraction: Interest Point Detectors	212
		4.5.1 Introduction	212
		4.5.2 Properties of the ideal feature detector	213
		4.5.3 Corner detectors	215
		4.5.4 Invariance to photometric and geometric changes	220
		4.5.5 Blob detectors	227
	4.6	Place Recognition	234
		4.6.1 Introduction	234
		4.6.2 From bag of features to visual words	235
		4.6.3 Efficient location recognition by using an inverted file	236
		4.6.4 Geometric verification for robust place recognition	237
		4.6.5 Applications	237
		4.6.6 Other image representations for place recognition	238
	4.7	<i>S</i> (, , ,	242
		4.7.1 Line fitting	243
		4.7.2 Six line-extraction algorithms	248
		4.7.3 Range histogram features	259
		4.7.4 Extracting other geometric features	260
	4.8	Problems	262
5	Mol	bile Robot Localization	265
	5.1	Introduction	265
	5.2	The Challenge of Localization: Noise and Aliasing	266
		5.2.1 Sensor noise	267
		5.2.2 Sensor aliasing	268
		5.2.3 Effector noise	269
		5.2.4 An error model for odometric position estimation	270
	5.3	To Localize or Not to Localize: Localization-Based Navigation Versus	
		Programmed Solutions	275
	5.4	Belief Representation	278
		5.4.1 Single-hypothesis belief	278
		5.4.2 Multiple-hypothesis belief	280